ESPEN Congress Prague 2007

Nutrition in Chronic Renal failure

Nutrition support in dialyzed patients

Noël Cano
Nutrition support in dialyzed patients

Noël Cano, MD, PhD
Human Nutrition Research Center of Auvergne
Clermont-Ferrand
France
Introduction

• Malnutrition is a frequent comorbidity in maintenance hemodialysis patients and its association with mortality is clear

• Therefore,
 • Recommendations for nutrition in dialysis have been elaborated by NKF, ESPEN and EDTA
 • Nutritional therapies have been given in attempt to counteract the deleterious effects of malnutrition
 • New approaches are being investigated to improve the efficiency of nutritional support
Nutrition in hemodialysis

Recommended macronutrient intakes

<table>
<thead>
<tr>
<th></th>
<th>ESPEN (1)</th>
<th>NKF (2)</th>
<th>EDTA (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>1.2 - 1.4</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>g/kg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>35</td>
<td>< 60 y: 35</td>
<td>30-35</td>
</tr>
<tr>
<td>kcal/kg/day</td>
<td></td>
<td>> 60 y: 30</td>
<td></td>
</tr>
</tbody>
</table>

1 - Clin Nutr, 2000
2 - Am J Kidney Dis, 2000
3 - Nephrol Dial Transplant, in press
Recommended micronutrient intakes

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Intake (mg/µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridoxin</td>
<td>10-15</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>30-60</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>1</td>
</tr>
<tr>
<td>1-25 (OH)₂ D₃</td>
<td>according to plasma Ca²⁺ & PTH</td>
</tr>
<tr>
<td>Zinc</td>
<td>15</td>
</tr>
<tr>
<td>Selenium</td>
<td>50-70</td>
</tr>
</tbody>
</table>

ESPEN consensus on nutritional treatment of patients with renal insufficiency

Recommendations: follow-up

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Interval(^1,2)</th>
<th>Risk threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary interview (3 d)</td>
<td>6 - 12 mo</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>every HD</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>1 mo</td>
<td></td>
</tr>
<tr>
<td>nPNA</td>
<td>1 mo</td>
<td>1 g/kg/d</td>
</tr>
<tr>
<td>Creatinin pre-HD</td>
<td>1 mo</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>1-3 mo</td>
<td>35 g/kg/d</td>
</tr>
<tr>
<td>Transthyretin (prealbumin)</td>
<td>1-3 mo</td>
<td>300 mg/kg/d</td>
</tr>
</tbody>
</table>

\(^1\)-ESPEN consensus on nutritional treatment of patients with renal insufficiency Clin Nutr 2000
How to reach the nutritional objectives?

- Dietary counselling
- Oral supplements
- Intradialytic parenteral nutrition
- Enteral nutrition

- Grade of malnutrition
- Spontaneous alimentation
- Patient compliance
Dietary follow-up

RCT. Six-month follow-up
Effect of dietician counselling on serum albumin changes

Independent from serum CRP

Leon JB et al. J Ren Nutr 2001
Daily supply: 500 kcal/kg/d
5 - 10 kcal/kg/d (CHO & fat)
0.4 - 0.6 g protein/kg/d

Oral supplements can only reach the nutritional objectives when spontaneous intakes are ≥ 20 kcal & 0.8 g protein/kg/d
Nondiabetic adult MHD patients with BMI <20 and serum albumin <4.0 g/dL:

- Control group: appropriate monitoring, dietary counselling

- Supplement group: post-HD oral nutrition, 500 kcal & 15 g protein for 1 month

Sharma M, J Renal Nutr 2003
Nutritional supply:
- 800-1200 kcal/HD (CHO & fat)
- 30-60 g AA/HD

60-kg patient:
- 5-8 kcal/kg/jour
- 0.2-0.4 g AA/kg/d

IDPN can only reach the nutritional objectives if spontaneous intakes are ≥ 20 kcal & 0.8 g protein/kg/d
Overall population of Health care system:
IDPN, n=1679 Controls, n=22517

Main objective: to evaluate, in a intention-to-treat study, the effects of a one-year IDPN on nutritional status, morbidity and mortality in malnourished MHD patients.

Secondary objective: to define the parameters predicting the response to nutritional therapy.
French Intradialytic Nutrition Evaluation Study (Fines)

Malnourished MHD patients

186 patients

Oral suppl during one year, n=93

Oral suppl + IDPN during one year, n=93

• Follow-up: two years (treatment period + one year)
• Visits at day 0 and month 3, 6, 12, 18 and 24

FineS
Nutritional status

Serum albumin, g/L

Serum prealbumin, mg/L

Control group
IDPN group
Patients Survival

Mean cumulative survival: 77% at 1 yr, 58% at 2 yr
Death: Control: n = 36, IDPN: n = 40

Logrank $p = 0.33$

Mean cumulative survival: 77% at 1 yr, 58% at 2 yr
Death: Control: n = 36, IDPN: n = 40

Logrank $p = 0.33$
Independent determinants of mortality
Multivariate Cox regression

Comorbidity (+1)
Albumin d0 (+1 g/L)
Creatinine d0 (+10 µmol/L)
Δ Prealbumin d0-m3 (> 30 mg/L)
Do inflammed patients respond to nutritional support?

Serum albumin, g/L

Serum prealbumin, mg/L

Baseline CRP < 10 mg/L, n=88
Baseline CRP ≥ 10 mg/L, n=86
Enteral nutrition

• Polymeric EN, administered via naso-gastric tube or gastrostomy

• Necessary during severe undernutrition, particularly when spontaneous intakes are < 20 kcal/kg/day (1):
 - IDPN cannot reach recommended supplies
 - daily nutritional support is needed
 - enteral nutrition should be preferred to parenteral nutrition

• Poorly investigated

Parenteral Nutrition in Adult Renal Failure-ESPEN guidelines

Dietary intakes and nutritional status evaluation

Moderate undernutrition
Spontaneous intakes
≤ 30 kcal/kg/day
≤ 1.1 g protein /kg/day

Dietary counselling

Oral supplements

Severe undernutrition
BMI < 20
Body weight loss > 10% within 6 mo
Albumin < 35 g/l
Transthyretin < 300 mg/l

Spontaneous intakes
> 20 kcal/kg/d

Lack of compliance

IDPN

Spontaneous intakes
< 20 kcal/kg/d
or
Stress conditions

Enteral Nutrition
if EN is not possible:
Central venous PN

No Improvement

No Improvement
How to improve the efficacy of nutritional support?

- Protein supply with anabolic effects
- Exercise
- Anabolizing agents: male hormone, GH
- Daily dialysis
- Association
 - Nutritional supply
 - exercise
 - anabolizing agents
Exercise augments the acute anabolic effects of IDPN in hemodialysis patients

Pupim L. AJP 2004
Anabolic effects of nandrolone decanoate in dialysis patients: a randomized controlled trial

Johansen KL et al. JAMA 1999;281:1275-1281

Figure 2. Changes in Weight and Body Composition

Body composition was measured by dual-energy x-ray absorptiometry. Changes from the baseline values are expressed as mean ± SEM. Asterisks indicate statistical significance compared with baseline values by paired t-test (P<.05); dagger, statistical significance compared with the placebo group by unpaired t test (P<.01).
139 adult patients on maintenance HD
- serum albumin < 40 g/L
- randomly assigned to 6 months of treatment with placebo or 20, 35, or 50 g/kg/d hGH

Results:
- Increase in BMI, LBM, transferrin, HDL-C
- No significant change in serum albumin
- Improvement of QOL

Feldt-Rasmussen et al
JASN 2007
Daily dialysis: Spontaneous nutrient intakes

Galland et al, Kidney Int 2001

Protein (g/kg/day) | Energy (kcal/kg/day)

- Standard HD
- daily HD (6 mo)
- daily HD (12 mo)
Conclusions (1)

• Dietary counselling, oral supplements and IDPN can improve nutritional status, independent of serum CRP

• Fines Study showed that the increase in serum transthyretin > 30 mg/L within 3 months of nutritional support is associated with a two-fold increase in the two-year survival
Conclusions (2)

• IDPN should only be prescribed in patients non-compliant to oral supplementation

• In patients who do not respond to nutritional support new approaches are:
 • exercise, anabolizing agents (male hormone, GH)
 • daily dialysis

XIV International Congress on Nutrition and Metabolism in Renal Disease

www.ismm-marseilles2008.org

MARSEILLES
Palais du Pharo
FRANCE
June 11–15
2008

Palais des Congrès du Pharo

Abstract submission deadline:
January 15, 2008

Preregistration
February, 28, 2008

www.ismm-marseilles2008.org