Why should we study the pharmacokinetics of administered nutrients?
The example of amino acids

Luc Cynober
Why should we study the pharmacokinetics of administered nutrients?
The example of amino acids

Prof. Luc Cynober
Clin. Chem. Lab, Cochin & Hotel-Dieu Hospitals, Paris
Dept. of Experimental, Metabolic and Clinical Biology,
Paris Descartes University
Learning objectives

• The behaviour of administered AAs cannot be extrapolated from biochemistry textbooks

• AAs, even when metabolically close, behave differently

• Association of AAs modifies their behaviour unpredictably. So any new combination must be tested in patients
Three cases

1. An AA largely metabolized in the splanchnic area: glutamine

2. An AA \approx not metabolized in the splanchnic area: citrulline

3. An AA that may have altered pharmacokinetics depending on other co-administered nutrients: arginine, ornithine α-ketoglutarate
• Glutamine given by the parenteral route is found to decrease morbidity and mortality in various subgroups of patients

• Initial studies cast doubt on efficacy when given enterally

True or not?
Why?
Glutamine: enteral vs. parenteral
(clinical and bioclinical studies in ICU)

<table>
<thead>
<tr>
<th>Parenteral</th>
<th>Enteral</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 studies:</td>
<td>9 studies:</td>
</tr>
<tr>
<td>3 post-operative, 4 ICU</td>
<td>5 ICU</td>
</tr>
<tr>
<td>2 bone marrow transplant</td>
<td>2 bone marrow transplant</td>
</tr>
<tr>
<td>1 burn injury</td>
<td>2 burn injury</td>
</tr>
<tr>
<td>0.18 to 0.57 g GLN/kg</td>
<td>0.20 to 0.45 g GLN/kg</td>
</tr>
<tr>
<td>Bio+clin</td>
<td>9</td>
</tr>
<tr>
<td>Clin</td>
<td>5</td>
</tr>
</tbody>
</table>

Confirmed by Novak et al.'s meta-analysis *(Crit. Care Med. 2002;30:2022-9)*
Pharmacokinetics of nutrients AA ESPEN2011 11-105

30% → 55% → 100% → [1³C₂] - glutamine

1³CO₂

58%
Do not expect any action when bioavailability is poor.

Transport in enterocytes → X

Metabolism in enterocytes → X

Blood → X

Muscle → X

action
GLUTAMINE IN ENTERAL NUTRITION

<table>
<thead>
<tr>
<th></th>
<th>Glutamine</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>n =</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>Age (years)</td>
<td>35.1 ± 11.8</td>
<td>34.5 ± 13.4</td>
</tr>
<tr>
<td>ISS</td>
<td>32.4 ± 11.3</td>
<td>31.8 ± 10.6</td>
</tr>
<tr>
<td>APACHE II</td>
<td>16.3 ± 5.9</td>
<td>15.6 ± 4.5</td>
</tr>
<tr>
<td>GLN</td>
<td>33 g</td>
<td>-</td>
</tr>
<tr>
<td>ALA, ASP, GLY, PRO, SER</td>
<td>-</td>
<td>isoN</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>17%*</td>
<td>43%</td>
</tr>
<tr>
<td>Bacteraemia</td>
<td>9%+</td>
<td>38%</td>
</tr>
<tr>
<td>Sepsis</td>
<td>3%*</td>
<td>22%</td>
</tr>
</tbody>
</table>

* *p < 0.02, + *p < 0.05 (in intention to treat)

from Houdijk APJ et al. Lancet 1998;352:772-776
Three cases

1. An AA largely metabolized in the splanchnic area: glutamine

2. An AA \approx not metabolized in the splanchnic area: citrulline

3. An AA that may have altered pharmacokinetics depending on other co-administered nutrients: arginine, ornithine α-ketoglutarate
Citrulline: a grey area to maintain ARG homeostasis

⇒ allows adequate nitrogen disposal and \(\diamond \)NO production
Replaces L-arginine (sickle cell disease)

C_{max}

CIT –

ORN –

ARG –

Plasmatic CIT concentration (umol/L)

Time after load (h)
Plasma citrulline

Plasma arginine

From Jourdan et al.
Citrulline transport systems in enterocytes

Three cases

1. An AA largely metabolized in the splanchnic area: glutamine

2. An AA \approx not metabolized in the splanchnic area: citrulline

3. An AA that may have altered pharmacokinetics depending on other co-administered nutrients: arginine, ornithine α-ketoglutarate
Plasma arginine availability controls nitric oxide synthesis by channelling of arginine pathways
Influence of associated salt
Ornithine α-ketoglutarate

- 6 healthy males
- 10 g OKG
- 6.4 g ORN (as hydrochloride)
- 3.6 g αKG (as calcium)

Fig. 12. Influence of OKG administration on metabolism of ornithine and α-ketoglutarate.
But not so clear and not so simple:

- The influence of the route of administration: ALA-GLN, enteral *versus* parenteral
- Disease-specific behaviour: the case of endotoxemia
Fig. 3. Time course of disappearance of Ala-Gln from plasma (A) and liberation and subsequent elimination of free glutamine and free alanine (B) after bolus injection of Ala-Gln in 10 healthy subjects (mean ± SD). Adapted from Reference 35 with permission.
Plasma glutamine response

Plasma citrulline response

At this point everything seems clear and simple

But not so clear and not so simple:

- The influence of the route of administration: ALA-GLN, enteral *versus* parenteral

- Disease-specific behaviour: the case of endotoxemia
Acclimatization

E. coli LPS

D–7 ↓ D 0 6 H 12 H 22 H

Starvation

Blood collection (9 samples)

Amino acid administration

Control group

LPS group

Control CIT (n = 6)
Control ARG (n = 6)
Control GLN (n = 6)
LPS CIT (n = 6)
LPS ARG (n = 6)
LPS GLN (n = 6)
Pharmacokinetic parameters of *citrulline* in plasma after oral citrulline, arginine or glutamine supplementation in control and endotoxemic rats

<table>
<thead>
<tr>
<th>Amino acid administered</th>
<th>Citrulline</th>
<th>Arginine</th>
<th>Glutamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (µmol.min/ml)</td>
<td>Control</td>
<td>761 ± 67</td>
<td>101 ± 16</td>
</tr>
<tr>
<td></td>
<td>LPS</td>
<td>508 ± 72*</td>
<td>43 ± 23</td>
</tr>
<tr>
<td>Cmax (µmol/l)</td>
<td>Control</td>
<td>3252 ± 459</td>
<td>388 ± 53</td>
</tr>
<tr>
<td></td>
<td>LPS</td>
<td>1453 ± 368*</td>
<td>216 ±84</td>
</tr>
</tbody>
</table>

Data are given as mean ± SEM

Significantly different (p < 0.05) from control

Pharmacokinetic parameters of *arginine* in plasma after oral supplementation of citrulline, glutamine or arginine in control and endotoxemic rats

<table>
<thead>
<tr>
<th>Amino acid administered</th>
<th>Citrulline</th>
<th>Arginine</th>
<th>Glutamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (µmol.min/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>138 ± 12</td>
<td>101 ± 16</td>
<td>−18 ± 6</td>
</tr>
<tr>
<td>LPS</td>
<td>92 ± 9 *</td>
<td>43 ± 23</td>
<td>6 ± 4*</td>
</tr>
<tr>
<td>Cmax (µmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>307 ± 23</td>
<td>388 ± 53</td>
<td>14 ± 10</td>
</tr>
<tr>
<td>LPS</td>
<td>256 ± 57</td>
<td>216 ± 84</td>
<td>33 ± 7</td>
</tr>
</tbody>
</table>

Data are given as mean ± SEM
* Significantly different (*p* < 0.05) from control
p = 0.08 *versus* arginine
We must study pharmacokinetics of administered AAs because:

- In the context they act like drugs, not simply nutrients
- Specificity according to route of administration
- Major inter-organ exchanges
- Nutrient/nutrient interactions
- Disease-specific alterations
- Utility of *in silico* studies
Acknowledgements

- C. Coudray-Lucas
- JP De Bandt
- C. Moinard
- S. Barhi
- FZ El Wafi
- S. Osowska
- M. Jourdan
- KS Nair (Rochester)
- PAM Van Leeuwen (Amsterdam)
- S. Ngon