ESFEN Congress Leipzig 2013

LLL Session - Nutritional support in respiratory diseases

New findings of meta-analysis in nutrition interventions for COPD and multimodal approaches

C. Pison (FR)
Nutritional Support in Respiratory Diseases – LLL 38

New findings of meta-analysis in nutrition interventions for COPD and multimodal approaches

Pr. Ch. Pison, MD, PhD

Pulmonary Division
Lung transplantation group
University Hospital, Grenoble

Inserm1055, Grenoble
Joseph Fourier University
Grenoble, France

Leipzig, 4th of September 2014
Obstructive Lung Diseases

International Classification of Functioning ICF-2, WHO, 2001

Deficiency

Lungs
Oxidant stress, Hypoxia, Inflammation

Systemic
Oxidant stress, Hypoxia, Inflammation

FEV₁
SpO₂

BMI
Skeletal muscles

Activities

Dyspnea

6 MWD

Participation

Quality of life - Morbidity Mortality
Therapy at Each Stage of COPD

I: Mild
- FEV₁/FVC < 70%
- FEV₁ > 80% predicted

Add short-acting bronchodilator (when needed)

Active reduction of risk factor(s); influenza vaccination

II: Moderate
- FEV₁/FVC < 70%
- 50% ≤ FEV₁ < 80% predicted

Add regular treatment with one or more long-acting bronchodilators (when needed); Add rehabilitation

Add inhaled glucocorticosteroids if repeated exacerbations

III: Severe
- FEV₁/FVC < 70%
- 30% ≤ FEV₁ < 50% predicted

Add inhaled glucocorticosteroids if repeated exacerbations

IV: Very Severe
- FEV₁/FVC < 70%
- FEV₁ < 30% predicted or FEV₁ < 50% predicted plus chronic respiratory failure

Add long term oxygen if chronic respiratory failure. Consider surgical treatments
Nutritional needs in COPD

- Depending on their condition COPD patients can need up to 600 kcal /day more than healthy individuals

- “Nutritional supplementation should initially consist of adaptations in the patients’ dietary habits and should be extended to administration of energy-dense supplements”

Baarends et al. Am J Respir Crit Care Med 1997;155:549-54
Baarends et al. 1997;52:780-5
Schols et al. JPEN 1992;16: 364-8
Nici et al. AJRCCM 2006;173:1390-1413
Post prandial dyspnoea: fat vs. carbohydrate

- Acute effects of ONS, fat vs. carbohydrate, 11 subjects COPD, 62±8 yrs, FEV$_1$ 34±12% pred., BMI 22.6±2.3. Vermeeren et al. AJCN 2001;73:295-301

250 kcal fat rich oral supplement
250 kcal carbohydrate rich oral supplement

FIGURE 6. Difference between mean (±SEM) post- and preprandial shortness of breath score on a visual analogue scale (VAS) 30 and 60 min after consumption of a fat-rich (■) and a carbohydrate-rich (□) supplement. n = 11. ANOVA with postprandial value as the dependent variable, with treatment and period as fixed factors, and with patient as a random factor.
More not always better!

- Energy intake, 568 kcal/d vs. 800 kcal/d, 2 severe depleted groups of COPD, 19 vs. 20, 8-weeks in-pulmonary rehabilitation

Nutritional intervention

- Weekes et al. Thorax 2009;64:326-31
 + 194 kcal/d, + 11.8 g protein/d vs. Controls
 no changes in muscle strength and respiratory function
 St Georges + 10.1, MRC score + 1, ADL score + 1.5
Nutritional support in COPD treatment - Guidelines

- **2006 ERS /ATS guidelines. Nici et al. AJRCCM 2006;173:1390-1413**
 - BMI < 21
 - involuntary weight loss: >10% during last 6 months or >5% in the past month)
 - depletion in FFMI, <16 males, <15 females

- **2010 SPLF guidelines. RMR 2010;27:522-48**
 - No attempt to lose weight
 - Rehabilitation > nutritional supplementation in any cases, especially if under nutrition

- **2014 – ERS statement on Nutrition and COPD**
Nutritional support: essential during rehabilitation

- Risk of nutritional depletion in subjects, even normal weighted, undergoing Pulmonary Rehabilitation

 - **Steiner et al. Thorax 2003;58:745-51.**
 - **Goris et al. The British journal of nutrition 2003;89:725-31.**
 - **Slinde et al. Clinical nutrition 2003;22:159-65.**
 - **Creutzberg et al. Nutrition 2003;19:120-7**
 - **Weekes et al. Thorax 2010;64:326-31**
Nutritional intervention

Nutritional supplementation for stable chronic obstructive pulmonary disease (Review)

Ferreira IM, Brooks D, White J, Goldstein R

THE COCHRANE COLLABORATION®
Nutritional intervention changes body weight, kg

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean Difference</th>
<th>SE</th>
<th>Experimental Total</th>
<th>Control Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.1 Undernourished</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeLetter 1991 (1)</td>
<td>1.2</td>
<td>0.4123</td>
<td>18</td>
<td>17</td>
<td>18.0%</td>
<td>1.20 [0.39, 2.01]</td>
</tr>
<tr>
<td>Ethimocou 1988 (2)</td>
<td>4.1</td>
<td>1.5071</td>
<td>7</td>
<td>7</td>
<td>1.3%</td>
<td>4.10 [1.15, 7.05]</td>
</tr>
<tr>
<td>Fuenzalida 1990 (3)</td>
<td>1.22</td>
<td>1.4284</td>
<td>5</td>
<td>4</td>
<td>1.5%</td>
<td>1.22 [-1.58, 4.02]</td>
</tr>
<tr>
<td>Lewis 1987 (4)</td>
<td>1.2</td>
<td>0.442</td>
<td>10</td>
<td>11</td>
<td>15.7%</td>
<td>1.20 [0.33, 2.07]</td>
</tr>
<tr>
<td>Otte 1989</td>
<td>1.36</td>
<td>0.4579</td>
<td>13</td>
<td>13</td>
<td>14.6%</td>
<td>1.36 [0.46, 2.26]</td>
</tr>
<tr>
<td>Rogers 1992</td>
<td>2.8</td>
<td>1.8243</td>
<td>15</td>
<td>12</td>
<td>0.9%</td>
<td>2.80 [-0.78, 6.38]</td>
</tr>
<tr>
<td>Schols 1995 (5)</td>
<td>2.4</td>
<td>0.5967</td>
<td>39</td>
<td>25</td>
<td>8.6%</td>
<td>2.40 [1.23, 3.57]</td>
</tr>
<tr>
<td>Sugawara 2010 (6)</td>
<td>1.91</td>
<td>0.7184</td>
<td>17</td>
<td>14</td>
<td>5.9%</td>
<td>1.91 [0.50, 3.32]</td>
</tr>
<tr>
<td>van Wetering 2010</td>
<td>2.8</td>
<td>0.9745</td>
<td>16</td>
<td>14</td>
<td>3.2%</td>
<td>2.80 [0.89, 4.71]</td>
</tr>
<tr>
<td>Weekes 2009</td>
<td>2.1</td>
<td>1.607</td>
<td>30</td>
<td>25</td>
<td>1.2%</td>
<td>2.10 [-1.05, 5.25]</td>
</tr>
<tr>
<td>Whittaker 1990</td>
<td>3</td>
<td>0.8944</td>
<td>6</td>
<td>4</td>
<td>3.8%</td>
<td>3.00 [1.25, 4.75]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>176</td>
<td>148</td>
<td>74.8%</td>
<td></td>
<td>1.73 [1.29, 2.17]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.06; Chi² = 11.21, df = 10 (P = 0.34); I² = 11%
Test for overall effect: Z = 7.70 (P < 0.00001)

1.7.2 Nourished

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean Difference</th>
<th>SE</th>
<th>Experimental Total</th>
<th>Control Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schols 1995</td>
<td>1.5</td>
<td>0.8061</td>
<td>33</td>
<td>38</td>
<td>4.7%</td>
<td>1.50 [-0.08, 3.08]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>33</td>
<td>38</td>
<td>4.7%</td>
<td></td>
<td>1.50 [-0.08, 3.08]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Not applicable
Test for overall effect: Z = 1.86 (P = 0.06)

1.7.3 Combined population of undernourished and nourished

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean Difference</th>
<th>SE</th>
<th>Experimental Total</th>
<th>Control Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowles 1988 (7)</td>
<td>2.05</td>
<td>3.1791</td>
<td>13</td>
<td>12</td>
<td>0.3%</td>
<td>2.05 [4.18, 8.28]</td>
</tr>
<tr>
<td>Steiner 2003</td>
<td>1.21</td>
<td>0.779</td>
<td>25</td>
<td>35</td>
<td>5.0%</td>
<td>1.21 [-0.32, 2.74]</td>
</tr>
<tr>
<td>Sugawara 2012</td>
<td>1.5</td>
<td>0.4486</td>
<td>17</td>
<td>14</td>
<td>15.2%</td>
<td>1.50 [0.62, 2.38]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>55</td>
<td>61</td>
<td>20.5%</td>
<td></td>
<td>1.44 [0.68, 2.19]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 0.14, df = 2 (P = 0.93); I² = 0%
Test for overall effect: Z = 3.72 (P = 0.00002)

Total (95% CI)

<table>
<thead>
<tr>
<th>Mean Difference</th>
<th>SE</th>
<th>Experimental Total</th>
<th>Control Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>247</td>
<td>100.0%</td>
<td></td>
<td>1.62 [1.27, 1.96]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 11.66, df = 14 (P = 0.63); I² = 0%
Test for overall effect: Z = 9.24 (P < 0.000001)
Test for subgroup differences: Chi² = 0.45, df = 2 (P = 0.80); I² = 0%

17 studies, 8 combined with exercise, increased body weight
Nutritional intervention changes fat-free mass, kg

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Supplement Total</th>
<th>Control Total</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.1 Undernourished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugawara 2010 (1)</td>
<td>0.8329 0.3713</td>
<td>17 15</td>
<td>0.83 [0.11, 1.56]</td>
</tr>
<tr>
<td>Schols 1995 (2)</td>
<td>1.0495 0.2735</td>
<td>39 25</td>
<td>1.05 [0.51, 1.59]</td>
</tr>
<tr>
<td>van Wetering 2010 (3)</td>
<td>1.5066 0.4282</td>
<td>15 14</td>
<td>1.51 [0.67, 2.35]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>71 54</td>
<td></td>
<td>1.08 [0.70, 1.47]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 1.45, df = 2 (P = 0.48); I² = 0%
Test for overall effect: Z = 5.54 (P < 0.00001)

1.8.2 Adequately nourished			
Schols 1995	0.2651 0.239	33 38	0.27 [-0.20, 0.73]
Subtotal (95% CI)	33 38		0.27 [-0.20, 0.73]

Heterogeneity: Not applicable
Test for overall effect: Z = 1.11 (P = 0.27)

1.8.3 Combined population of undernourished and nourished patients			
Steiner 2003	-0.3712 0.2642	25 35	-0.37 [-0.89, 0.15]
Sugawara 2012 (4)	0.3532 0.3641	17 14	0.35 [-0.36, 1.07]
Subtotal (95% CI)	42 49		-0.05 [-0.76, 0.65]

Heterogeneity: Tau² = 0.16; Chi² = 2.59, df = 1 (P = 0.11); I² = 61%
Test for overall effect: Z = 0.15 (P = 0.88)

Total (95% CI)

146 141 100.0% 0.57 [0.04, 1.09]

Heterogeneity: Tau² = 0.33; Chi² = 22.28, df = 5 (P = 0.0005); I² = 78%
Test for overall effect: Z = 2.11 (P = 0.03)
Nutritional intervention changes in 6-MWD, m

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Experimental N</th>
<th>Control N</th>
<th>Mean Difference (SE)</th>
<th>I^2 (%)</th>
<th>Weight</th>
<th>Difference (95% CI)</th>
<th>Subtotal (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6-minute walk test</td>
<td>DeLette 1991 (1)</td>
<td>18</td>
<td>17</td>
<td>36.58 (8.7393)</td>
<td>33.1 %</td>
<td>36.58 [19.45, 53.71]</td>
<td>100.0 % 39.96 [22.66, 57.26]</td>
</tr>
<tr>
<td>2 12-minute walk test</td>
<td>Ethimiou 1988 (2)</td>
<td>7</td>
<td>7</td>
<td>47 (23.3421)</td>
<td>11.1 %</td>
<td>47.00 [1.25, 92.75]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugawara 2010 (3)</td>
<td>17</td>
<td>13</td>
<td>54.12 (15.1764)</td>
<td>20.0 %</td>
<td>54.12 [24.37, 83.87]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugawara 2012 (4)</td>
<td>17</td>
<td>14</td>
<td>105 (37.5965)</td>
<td>5.0 %</td>
<td>105.00 [31.31, 178.69]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>van Wetering 2010 (5)</td>
<td>16</td>
<td>14</td>
<td>21.5 (9.6125)</td>
<td>30.9 %</td>
<td>21.50 [2.66, 40.34]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0 % -0.04 [-255.61, 255.53]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 159.25; Chi^2 = 7.30, df = 4 (P = 0.12); I^2 = 45%</td>
<td>Test for overall effect: Z = 4.53 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Incremental shuttle walk test</td>
<td>Otte 1989</td>
<td>13</td>
<td>15</td>
<td>-130.3 (79.9521)</td>
<td>50.1 %</td>
<td>-130.30 [-287.00, 26.40]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rogers 1992</td>
<td>15</td>
<td>12</td>
<td>130.49 (80.3839)</td>
<td>49.9 %</td>
<td>130.49 [-27.06, 288.04]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0 % 17.40 [-126.41, 161.21]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: not applicable</td>
<td>Test for overall effect: Z = 0.24 (P = 0.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi^2 = 0.19, df = 2 (P = 0.91), I^2 = 0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nutritional intervention alone is not enough

CHRONIC ILLNESS
- e.g. Chronic heart failure,
- Chronic obstructive pulmonary disease,
- Chronic kidney disease,
- Chronic infection & Sepsis,
- Cancer

ORGAN FAILURE
SPECIFIC DISTURBANCES
- Hypoxia,
- Acidosis,
- Oxidative stress,
- Growth factor impairments …

Anorexia

Inflammation

Insulin resistance

Hypogonadism

Anemia

FAT LOSS

MUSCLE WASTING

- Weight loss
- Weakness & Fatigue: reduced muscle strength, VO₂ max, and physical activity

Multimodal Intervention

Schols et al. AJRCCM 1995;152;1268-74

• Patients 233, FEV₁ 35 ± 5 %
• Duration 8 weeks, in-patient rehabilitation

• Intervention - exercise + education
 - exercise + education + nutrition + placebo
 - exercise + education + nutrition + anabolic steroids

 Exercise training: - endurance
 - low impact conditioning exercises
 - no strength training

• Results
 • Increase in body weight with nutrition alone & anabolic steroids
 • Enhanced increase in FFM / Pi-max with anabolic steroids
Multimodal Intervention

Schols et al. AJRCCM 1998;157;1791-7

Multivariate Analysis of Predictors of Mortality: Prospective Study

<table>
<thead>
<tr>
<th>Variables</th>
<th>RR</th>
<th>95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in weight</td>
<td>0.996</td>
<td>0.992–0.999</td>
<td>0.01</td>
</tr>
<tr>
<td>Change in P(_{\text{max}})</td>
<td>0.990</td>
<td>0.976–1.004</td>
<td>NS</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P versus A</td>
<td>0.753</td>
<td>0.447–1.267</td>
<td>NS</td>
</tr>
<tr>
<td>N versus A</td>
<td>0.872</td>
<td>0.530–1.432</td>
<td>NS</td>
</tr>
<tr>
<td>BMI</td>
<td>0.868</td>
<td>0.803–0.939</td>
<td>< 0.001</td>
</tr>
<tr>
<td>FEV(_1)</td>
<td>0.983</td>
<td>0.962–1.003</td>
<td>NS</td>
</tr>
<tr>
<td>IVC</td>
<td>0.995</td>
<td>0.982–1.008</td>
<td>NS</td>
</tr>
<tr>
<td>Pa(_o_2)</td>
<td>0.877</td>
<td>0.751–1.024</td>
<td>NS</td>
</tr>
<tr>
<td>Pa(_c_0_2)</td>
<td>0.977</td>
<td>0.707–1.352</td>
<td>NS</td>
</tr>
<tr>
<td>Age, yr</td>
<td>1.056</td>
<td>1.022–1.090</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Definition of abbreviation: P\(_{\text{max}}\) = maximal static inspiratory pressure. For other definitions, see Tables 1 and 2.

* Entered as time-dependent covariate.*

![Graph showing weight gain](image)
• **Patients** 102, 66±9 yrs, FEV\(_1\) 58±17 %, BMI 26.1±4.4
 97, 67±9 yrs, FEV\(_1\) 60±15 %, BMI 27.3±4.7
 Wmax < 70%, 20% depleted

• **Duration** 2 years

• **Intervention** 4 months home multimodal intervention,
 20 maintenance care
 versus usual care

• **Results**
 • 4 months: better FFM, QoL, Wmax, endurance, MRC
dyspnea score, hand grip, 6MWD
 • 2 years : better QoL, MRC score, endurance, 6MWD
Multimodal Intervention

[Graph showing changes in 6MWD (meters) from baseline over time (in months) for INTERCOM muscle wasted, INTERCOM muscle non-wasted, Usual Care muscle non-wasted, and Usual Care muscle muscle wasted.]
Multimodal Intervention

testosterone

Casaburi et al. Am J Crit Care Med 2004;170;870-8

47 male patients with COPD, mean $FEV_1 = 40\%$
randomized, double blind, controlled
4 groups, resistance exercise, 100 mg
testosterone IM/week, 10 weeks
Multimodal Intervention

PUFA

80 COPD, 8 weeks rehabilitation plus oral nutritional supplement (Respifor®)

Double blind, controlled design: oral n-3 PUFA, 9 g/day during 8 weeks
Multimodal Intervention

IRAD2 study in Chronic Respiratory Failure

- **Patients**
 60, 66.6±9.6 yrs, BMI 21.5±3.8
 62, 65.1±9.6 yrs, BMI 21.4±4.0

- **Duration**
 12 weeks, 12 months follow-up

- **Intervention**
 - Education + Exercise + ONS + oral Testosterone
 - Education

- **Results**
 - 3 months: increases in body weight, FFM,QF, Hb, endurance, Wmax, QoL in women
 - 15 months : better survival per-protocol analysis
Multimodal Intervention

IRAD2 study in Chronic Respiratory Failure

Control group

D\textsubscript{1}: first day of education (Home)

D\textsubscript{90}=M\textsubscript{3}: last investigations (Hospital)

D\textsubscript{270}=M\textsubscript{9}

D\textsubscript{450}=M\textsubscript{15}

D\textsubscript{inclusion}: first investigations

D\textsubscript{random}.

D\textsubscript{1}: first day of rehabilitation (Home)

D\textsubscript{90}=M\textsubscript{3}: last investigations (Hospital)

Rehabilitation group
Multimodal Intervention

IRAD2 study in Chronic Respiratory Failure
Multimodal Intervention

IRAD2 study in Chronic Respiratory Failure

![Graph showing survival analysis and number at risk for different groups.](image-url)
Multimodal Intervention

IRAD2 study in Chronic Respiratory Failure

Pison et al. Thorax 2011;66:953-60
Multimodal Intervention
NIV

Budweiser et al. Respir Care 2006;51:126-32
TABLE 1: Body composition in lung volume reduction surgery (LVRS) and respiratory rehabilitation (RR) groups

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Fat-free mass</th>
<th></th>
<th></th>
<th>Fat mass</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline g</td>
<td>12 month</td>
<td>36 month</td>
<td>60 month</td>
<td>Baseline g</td>
<td>12 month</td>
</tr>
<tr>
<td>Upper limbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVRS</td>
<td>5800 ± 270</td>
<td>+4.1*</td>
<td>+3.8</td>
<td>+3.5</td>
<td>2560 ± 145</td>
<td>+4.6*</td>
</tr>
<tr>
<td>RR</td>
<td>5731 ± 284</td>
<td>+0.7</td>
<td>-2.2</td>
<td>-2.3</td>
<td>2572 ± 138</td>
<td>-2.1</td>
</tr>
<tr>
<td>p-value</td>
<td>0.76</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.95</td>
<td>0.02</td>
</tr>
<tr>
<td>Trunk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVRS</td>
<td>26256 ± 2310</td>
<td>+3.7</td>
<td>+3.5</td>
<td>+3.2</td>
<td>8470 ± 1230</td>
<td>+9.7**</td>
</tr>
<tr>
<td>RR</td>
<td>26123 ± 1957</td>
<td>+0.2</td>
<td>-4.6</td>
<td>-4.7</td>
<td>8485 ± 1245</td>
<td>-1.3</td>
</tr>
<tr>
<td>p-value</td>
<td>0.91</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.91</td>
<td>0.007</td>
</tr>
<tr>
<td>Lower limbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVRS</td>
<td>15620 ± 1540</td>
<td>+7.4**</td>
<td>+7.1**</td>
<td>+5.1*</td>
<td>6630 ± 346</td>
<td>+3.9</td>
</tr>
<tr>
<td>RR</td>
<td>15590 ± 1348</td>
<td>+1.4</td>
<td>-2.3</td>
<td>-2.5</td>
<td>6644 ± 233</td>
<td>-2.3</td>
</tr>
<tr>
<td>p-value</td>
<td>0.89</td>
<td>0.03</td>
<td>0.005</td>
<td>0.007</td>
<td>0.89</td>
<td>0.01</td>
</tr>
<tr>
<td>Total body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVRS</td>
<td>47300 ± 3657</td>
<td>+6.0**</td>
<td>+5.3**</td>
<td>+4.0*</td>
<td>18810 ± 1024</td>
<td>+7.1**</td>
</tr>
<tr>
<td>RR</td>
<td>47120 ± 3216</td>
<td>+1.2</td>
<td>-4.6*</td>
<td>-4.7*</td>
<td>18842 ± 1176</td>
<td>-1.9</td>
</tr>
<tr>
<td>p-value</td>
<td>0.81</td>
<td>0.03</td>
<td>0.006</td>
<td>0.01</td>
<td>0.92</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Data are presented as mean ± sd or % change from baseline. **: p < 0.01; *: p ≤ 0.05.
Multimodal Intervention

lung transplantation

All indications, n = 204
Multimodal Intervention

- Low energy intake
- Inactivity
- Hypogonadism
- Inflammation
- Insulin-resistance
- Others, hypoxia, ..

Multimodal approach of undernutrition

Integrated care
- Counseling
- ONS
- Exercise
- Androgens
- others:
 - n-3 FA
 - N-acetylcysteine
 - anti-TNF
 - etc.
Personalized & Comprehensive Cares

- Patient perspectives and objectives
- Smoking
- Infection
- Respiratory mechanical disadvantages: long-acting bronchodilators
- Hypoxemia
- Energy intake deficit
- Promotion of Daily Physical Activities
- Modulation of systemic inflammation, \textit{omega-3}
- \textit{Lung volume reduction}
- \textit{Lung transplantation}
Conclusions

- Multimodal Evaluation
- Multimodal Intervention
- Interventions at early and advanced disease, to be tailored to the patient perspective
- Role of home disease management